RISE SCHOLARSHIP – ADMISSION TEST – SAMPLE PAPER

CLASS – 9th to 10th

1. If $\frac{\sqrt[3]}{\sqrt[3]{6}} = \sqrt[3]{k}$ Then k the value of k is (a) 144 (b) 196 (c) 324 (d) 576 2. The value of $\frac{1}{1+\sqrt{2}} + \frac{2}{\sqrt{2}+2} + \frac{3}{2+\sqrt{7}} + \frac{4}{\sqrt{7}+\sqrt{11}} + \frac{5}{\sqrt{11}+4}$ is (a)3 (b) 5 (c) 21 (d) 19 3. If $(x+a)(x-3) = x^2 + 4x + b$ then the value of $a^2 - b$ is (a) 60 (b) 70 (c) 80 (d) 28 4. If $(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1) = 2^8 - 1$ then the value of k is (a) 16 (b) 17 (c) 64 (d) 32 5. If $(a^2+b^2)^3 = (a^3+b^3)^2$ then the value of $\frac{a}{b} + \frac{b}{a}$ is (a) $\frac{3}{2}$ (b) $\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$ 6. If $2^a = 3, 3^b = 5, 5^c = 8$ then the value of $a \cdot b \cdot c$ is (a) 3 (b) 4 (c) 5 (d) 8 7. The number of digits in the expansion of the number $4^{30} \cdot 25^{25}$ is (a) 54 (b) 55 (c) 80 (d) 62 8. If $a^p \cdot a^q \cdot a^r = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$		Se	ection – I
(a) 144 (b) 196 (c) 324 (d) 576 2. The value of $\frac{1}{1+\sqrt{2}} + \frac{2}{\sqrt{2}+2} + \frac{3}{2+\sqrt{7}} + \frac{4}{\sqrt{7}+\sqrt{11}} + \frac{5}{\sqrt{11+4}}$ is (a)3 (b) 5 (c) 21 (d) 19 3. If $(x+a)(x-3) = x^2 + 4x + b$ then the value of $a^2 - b$ is (a) 60 (b) 70 (c) 80 (d) 28 4. If $(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1) = 2^8 - 1$ then the value of k is (a) 16 (b) 17 (c) 64 (d) 32 5. If $(a^2+b^2)^3 = (a^3+b^3)^2$ then the value of $\frac{a}{b} + \frac{b}{a}$ is (a) $\frac{3}{2}$ (b) $\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$ 6. If $2^a = 3, 3^b = 5, 5^c = 8$ then the value of $a \cdot b \cdot c$ is (a) 3 (b) 4 (c) 5 (d) 8 7. The number of digits in the expansion of the number $4^{30} \cdot 25^{25}$ is (a) 54 (b) 55 (c) 80 (d) 62 8. If $a^p \cdot a^q \cdot a^r = a^{p^{rq+r}}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$	1.	If $\frac{\sqrt[3]{2} \cdot \sqrt{3}}{\sqrt[6]{6}} = \sqrt[12]{k}$ Then k the value of k is	
2. The value of $\frac{1}{1+\sqrt{2}} + \frac{2}{\sqrt{2}+2} + \frac{3}{2+\sqrt{7}} + \frac{4}{\sqrt{7}+\sqrt{11}} + \frac{5}{\sqrt{11}+4}$ is (a)3 (b) 5 (c) 21 (d) 19 3. If $(x+a)(x-3)=x^2+4x+b$ then the value of a^2-b is (a) 60 (b) 70 (c) 80 (d) 28 4. If $(2+1)(2^2+1)(2^4+1)(2^6+1)=2^k-1$ then the value of k is (a) 16 (b) 17 (c) 64 (d) 32 5. If $(a^2+b^2)^3 = (a^3+b^3)^2$ then the value of $\frac{a}{b} + \frac{b}{a}$ is (a) $\frac{3}{2}$ (b) $\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$ 6. If $2^a = 3, 3^b = 5, 5^c = 8$ then the value of $a \cdot b \cdot c$ is (a) 3 (b) 4 (c) 5 (d) 8 7. The number of digits in the expansion of the number $4^{30} \cdot 25^{25}$ is (a) 54 (b) 55 (c) 80 (d) 62 8. If $a^p \cdot a^q \cdot a^r = a^{p^{pq+r}}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$		(a) 144 (c) 324	(b) 196 (d) 576
(a)3 (b) 5 (c) 21 (d) 19 3. If $(x+a)(x-3)=x^2+4x+b$ then the value of a^2-b is (a) 60 (b) 70 (c) 80 (d) 28 4. If $(2+1)(2^2+1)(2^4+1)(2^6+1)=2^k-1$ then the value of k is (a) 16 (b) 17 (c) 64 (d) 32 5. If $(a^2+b^2)^3 = (a^3+b^3)^2$ then the value of $\frac{a}{b}+\frac{b}{a}$ is (a) $\frac{3}{2}$ (b) $\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$ 6. If $2^a = 3, 3^b = 5, 5^c = 8$ then the value of $a \cdot b \cdot c$ is (a) 3 (b) 4 (c) 5 (d) 8 7. The number of digits in the expansion of the number $4^{30} \cdot 25^{25}$ is (a) 54 (b) 55 (c) 80 (d) 62 8. If $a^p \cdot a^q \cdot a^r = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$	2.	The value of $\frac{1}{1+\sqrt{2}} + \frac{2}{\sqrt{2}+2} + \frac{3}{2+\sqrt{7}} + \frac{4}{\sqrt{7}+\sqrt{11}}$	$\frac{1}{2} + \frac{5}{\sqrt{11} + 4}$ is
(c) 21 (d) 19 3. If $(x+a)(x-3)=x^2+4x+b$ then the value of a^2-b is (a) 60 (b) 70 (c) 80 (d) 28 4. If $(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)=2^k-1$ then the value of k is (a) 16 (b) 17 (c) 64 (d) 32 5. If $(a^2+b^2)^3 = (a^3+b^3)^2$ then the value of $\frac{a}{b}+\frac{b}{a}$ is (a) $\frac{3}{2}$ (b) $\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$ 6. If $2^a = 3, 3^b = 5, 5^c = 8$ then the value of $a \cdot b \cdot c$ is (a) 3 (b) 4 (c) 5 (d) 8 7. The number of digits in the expansion of the number $4^{30} \cdot 25^{25}$ is (a) 54 (b) 55 (c) 80 (d) 62 8. If $a^p \cdot a^q \cdot a^r = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$		(a)3	(b) 5
3. If $(x+a)(x-3)=x^{n}+4x+b$ then the value of $a^{x}-b$ is (a) 60 (b) 70 (c) 80 (c) 28 4. If $(2+1)(2^{2}+1)(2^{4}+1)(2^{6}+1)=2^{k}-1$ then the value of k is (a) 16 (b) 17 (c) 64 (c) 32 5. If $(a^{2}+b^{2})^{3}=(a^{3}+b^{3})^{2}$ then the value of $\frac{a}{b}+\frac{b}{a}$ is (a) $\frac{3}{2}$ (b) $\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$ 6. If $2^{a}=3,3^{b}=5,5^{c}=8$ then the value of $a \cdot b \cdot c$ is (a) 3 (b) 4 (c) 5 (d) 8 7. The number of digits in the expansion of the number $4^{30} \cdot 25^{25}$ is (a) 55 (c) 80 (d) 62 8. If $a^{p} \cdot a^{q} \cdot a^{r} = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{pr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$		(c) 21	(d) 19
(a) 60 (b) 70 (c) 80 (c) 28 4. If $(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)=2^k-1$ then the value of k is (a) 16 (b) 17 (c) 64 (c) 32 5. If $(a^2+b^2)^3 = (a^3+b^3)^2$ then the value of $\frac{a}{b} + \frac{b}{a}$ is (a) $\frac{3}{2}$ (b) $\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$ 6. If $2^a = 3, 3^b = 5, 5^c = 8$ then the value of $a \cdot b \cdot c$ is (a) 3 (b) 4 (c) 5 (c) 80 (c) 55 (c) 80 (c) 55 (c) 80 (c) 62 8. If $a^p \cdot a^q \cdot a^r = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$	3.	If $(x+a)(x-3) = x^2 + 4x + b$ then the value of a^2	-b is
4. If $(2+1)(2^{2}+1)(2^{4}+1)(2^{8}+1)(2^{16}+1)=2^{k}-1$ then the value of k is (a) 16 (b) 17 (c) 64 (c) 32 5. If $(a^{2}+b^{2})^{3} = (a^{3}+b^{3})^{2}$ then the value of $\frac{a}{b} + \frac{b}{a}$ is (a) $\frac{3}{2}$ (b) $\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$ 6. If $2^{a} = 3, 3^{b} = 5, 5^{c} = 8$ then the value of $a \cdot b \cdot c$ is (a) 3 (b) 4 (c) 5 (c) 80 (c) 5 (c) 80 (c) 6 (c) 5 (c) 80 (c) 6 (c) 80 (c) 7 (c) 80 (c) 7		(a) 60 (c) 80	(b) 70 (d) 28
(a) 16 (b) 17 (c) 64 (d) 32 5. If $(a^2 + b^2)^3 = (a^3 + b^3)^2$ then the value of $\frac{a}{b} + \frac{b}{a}$ is (a) $\frac{3}{2}$ (b) $\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$ 6. If $2^a = 3, 3^b = 5, 5^c = 8$ then the value of $a \cdot b \cdot c$ is (a) 3 (b) 4 (c) 5 (c) 5 (d) 8 7. The number of digits in the expansion of the number $4^{30} \cdot 25^{25}$ is (a) 54 (b) 55 (c) 80 (d) 62 8. If $a^p \cdot a^q \cdot a^r = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$	4.	If $(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)=2^k-1$ the	the value of <i>k</i> is
(c) 64 (d) 32 5. If $(a^2 + b^2)^3 = (a^3 + b^3)^2$ then the value of $\frac{a}{b} + \frac{b}{a}$ is (a) $\frac{3}{2}$ (b) $\frac{4}{3}$ (c) $\frac{2}{3}$ (b) $\frac{4}{3}$ (d) $\frac{3}{4}$ 6. If $2^a = 3, 3^b = 5, 5^c = 8$ then the value of $a \cdot b \cdot c$ is (a) 3 (b) 4 (c) 5 (d) 8 7. The number of digits in the expansion of the number $4^{30} \cdot 25^{25}$ is (a) 54 (b) 55 (c) 80 (d) 62 8. If $a^p \cdot a^q \cdot a^r = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$		(a) 16	(b) 17
5. If $(a^{2} + b^{2})^{3} = (a^{3} + b^{3})^{2}$ then the value of $\frac{a}{b} + \frac{b}{a}$ is (a) $\frac{3}{2}$ (b) $\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$ 6. If $2^{a} = 3, 3^{b} = 5, 5^{c} = 8$ then the value of $a \cdot b \cdot c$ is (a) 3 (b) 4 (c) 5 (d) 8 7. The number of digits in the expansion of the number $4^{30} \cdot 25^{25}$ is (a) 54 (b) 55 (c) 80 (d) 62 8. If $a^{p} \cdot a^{q} \cdot a^{r} = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$		(c) 64	(d) 32
(a) $\frac{3}{2}$ (b) $\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$ 6. If $2^{a} = 3, 3^{b} = 5, 5^{c} = 8$ then the value of $a \cdot b \cdot c$ is (a) 3 (b) 4 (c) 5 (d) 8 7. The number of digits in the expansion of the number $4^{30} \cdot 25^{25}$ is (a) 54 (b) 55 (c) 80 (d) 62 8. If $a^{p} \cdot a^{q} \cdot a^{r} = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$	5.	If $(a^2 + b^2)^3 = (a^3 + b^3)^2$ then the value of $\frac{a}{b} + \frac{b}{a}$ is	3
(c) $\frac{2}{3}$ (d) $\frac{3}{4}$ 6. If $2^{a} = 3, 3^{b} = 5, 5^{c} = 8$ then the value of $a \cdot b \cdot c$ is (a) 3 (b) 4 (c) 5 (d) 8 7. The number of digits in the expansion of the number $4^{30} \cdot 25^{25}$ is (a) 54 (b) 55 (c) 80 (d) 62 8. If $a^{p} \cdot a^{q} \cdot a^{r} = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$		(a) $\frac{3}{2}$	(b) $\frac{4}{3}$
6. If $2^{a} = 3, 3^{b} = 5, 5^{c} = 8$ then the value of $a \cdot b \cdot c$ is (a) 3 (b) 4 (c) 5 (d) 8 7. The number of digits in the expansion of the number $4^{30} \cdot 25^{25}$ is (a) 54 (b) 55 (c) 80 (d) 62 8. If $a^{p} \cdot a^{q} \cdot a^{r} = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$		(c) $\frac{2}{3}$	(d) $\frac{3}{4}$
(a) 3 (b) 4 (c) 5 (d) 8 7. The number of digits in the expansion of the number $4^{30} \cdot 25^{25}$ is (a) 54 (b) 55 (c) 80 (d) 62 8. If $a^{p} \cdot a^{q} \cdot a^{r} = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$	6.	If $2^a = 3, 3^b = 5, 5^c = 8$ then the value of $a \cdot b \cdot c$ is	
(c) 5 (d) 8 7. The number of digits in the expansion of the number $4^{30} \cdot 25^{25}$ is (a) 54 (b) 55 (c) 80 (d) 62 8. If $a^p \cdot a^q \cdot a^r = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$		(a) 3	(b) 4
7. The number of digits in the expansion of the number $4^{30} \cdot 25^{25}$ is (a) 54 (b) 55 (c) 80 (d) 62 8. If $a^p \cdot a^q \cdot a^r = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$		(c) 5	(d) 8
(a) 54 (b) 55 (c) 80 8. If $a^{p} \cdot a^{q} \cdot a^{r} = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$	7.	The number of digits in the expansion of the nu	mber $4^{30} \cdot 25^{25}$ is
(c) 80 (d) 62 8. If $a^{p} \cdot a^{q} \cdot a^{r} = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$		(a) 54	(b) 55
8. If $a^{p} \cdot a^{q} \cdot a^{r} = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$ is (a) $p+q-r$ (b) $p-q+r$			(d) 62
(a) $p + q - r$ (b) $p - q + r$	8.	If $a^p \cdot a^q \cdot a^r = a^{p+q+r}$ then $\frac{p+q}{pq-1} + \frac{q+r}{qr-1} + \frac{p+r}{pr-1}$	is
		(a) $p + q - r$	(b) $p - q + r$
(c) <i>pqr</i> (d) 1		(c) pqr	(d) 1
9. If $x + \frac{1}{2x} = 4$ then the value of $x^3 + \frac{1}{8x^3}$ is	9.	If $x + \frac{1}{2x} = 4$ then the value of $x^3 + \frac{1}{8x^3}$ is	
(a) 16 (b) 17		(a) 16	(b) 17
(c) 64 (d) 58		(c) 64	(d) 58

	CLASS – 9 th	to 10 th	Rani Institute of Scholastic Education
10. In the figure below Then $\angle BDC =$	w, ABC is a scalene trian —	gle. BE, BD trisect $\angle ABC$, a	nd CE, CD trisect $\angle BCA$ and $\angle BAC = 30^{\circ}$
(a) 60° (b) 80°			
(c) 100°	,		
(d) 75°	B	C C	
		Section – II	
		PHYSICS	
11. The acceleration	due to the gravity at the	e centre of the earth is	
(a) Infinite		(b) Zero	
(c) $9.8 ms^{-2}$		(d) None of these	
12. The values of 'g'	is		
(a) constant even	rywhere on the earth		
(b) greater at the	e poles of the earth as co	ompared to equator	
(c) constant ever	rywhere in the universe		
(d) greater at the	e equators of the earth c	ompared to poles	
13. Two balls, one of	f iron and other of alum	inium experience same upt	nrust when dipped in water –
(a) both have eq	ual volume		
(b) both have eq	ual weight in air		
(c) both have eq	ual density		
(d) nothing defir	nite can be said		
14. The height at w earth = R) is	hich a body has one fo	ourth of its weight, when	it is on the surface of earth (radius of
(a) at height R		(b) at height $\frac{R}{2}$	
(c) at height $\frac{R}{4}$		(d) at height 2R	
15. An object is p (approximately	projected upwards w	ith a velocity of 100 m	/s. It will strike the ground after
(a) 10 sec	(b) 20 sec	(c) 15 sec	(d) 5 sec
16. Work is the prod	luct of time and		
(a) power	(b) energy	(c) force	(d) acceleration
17. A body of mass 2	20 kg, slows down from	5ms ⁻¹ to 2ms ⁻¹ by a retardin	g force. The work done by the force is –
(a) 50 J	(b) 200 J	(c) 300 J	(d) 210 J

en 🕺

RISE	SCHOLARSHIP – ADMISSION T CLASS – 9 th to 10 th	'EST – SAMPLE PAPER h Rani Institute of Scholastic Education
18. R a t	Rahul while driving to school, computes the av along the same route, there is less traffic and ave rrip is:	erage speed of his trip to be 20 kmh^{-1} . On his return trip rage speed is 40 kmh^{-1} . The average speed of Rahul's round
((a) 26.7 kmh^{-1} (b) 24.7 kmh^{-1}	(c) 28.7 kmh^{-1} (d) 30 kmh^{-1}
19. T fi	The variation of velocity of a particle with time figure. The distance travelled by the particle in f	moving along a straight line is illustrated in the following our seconds is
((a) 60 m	
(b) 55 m	
(c) 25 m	
((d) 30 m	$ \overbrace{\overset{\smile}{\Rightarrow}}^{\underbrace{\smile}} 10 \overbrace{0}^{\underbrace{}} 1 \overbrace{1} 2 3 4 $
20. I	mpulse has same unit as that of –	Time in second
(a) force	(b) pressure
(c) momentum	(d) moment of force
	Sec	tion – III
	CH	EMISTRY
21. 0	On increasing the temp of copper from 20°C to 8	80°C, which of the following happens?
(a) Position of copper atoms change, so potentia	l energy increases
(b) Vibration of copper atoms increases so kinet	ic energy decreases
(c) Position of copper atoms change, so kinetic e	nergy increases
(d) Vibration of copper atoms increases, so kine	tic energy increases
22.5 ii	50ml of the below mentioned liquids, is poured n the floor?	on the floor. Which will occupy the maximum surface area
(a) Paint	(b) Nail polish
(c) Water at 20°C	(d) Water at 80°C
23. I v	f there is another planet which has an atmosph water on this planet, it will boil at	eric pressure half of that of the earth, then if we try to boil
(a) 100°C	(b) less than 100°C
(c) more than 100°C	(d) cannot be predicted
24. V	When a glass of water is placed in the freezer, th	e water start freezing to ice
(a) from top to bottom	(b) from bottom to top
(c) from outside towards inside	(d) all at the same time, in no particular direction
25. 1	10 grams of H_2O is taken in the form of water, ic	e and steam. The one which has least density is
(a) Ice	(b) Water
(c) Steam	(d) All have same density
26. A b	A solution is made by mixing 20g of sugar in 180 by mass percentage will be	Ograms of water. The concentration of this solution in mass
	RISE Office: Plot No 774, Flat B-4, Fourth Floor, Vignesl	n Sai Garden Flats, Munusamy Salai, KK Nagar, Chennai - 600078

2

RISE SCH	IOLARSH	HIP – ADMISSIO CLASS – 9 th to	N TEST – SAMP	LE PAPER
(a) 10		(b) 100/9	(c) 1	(d) 9/100
27. 500gm b was f	s of a solution ound to be 20	n was made by mixing tv 0% in the solution. The	wo salts A and B in wate mass of A and B in the	er. The mass % of A found to be 10% and solution in respectively
(a) 50g	, 100g	(b) 10g, 20g	(c) 45g, 90g	(d) 49g, 96g
28.	0	Boiling point		
	Gas	_ 186		
	A	- 183		
	B	- 196		
		- 172		
	D			
A mixture o now warme (a) A	f gases A, B, e ed in a fractio	C and D are compressed nal distillation column.	l and then cooled to con The gas obtained at the (b) B (d) D	nvert into a liquid. This liquid mixture is e highest point in the column will be
20 A mixt	uro of calt or	and and culphur is shak	(u) D	arad through filter paper. The filtrate is
evapor	ated to dryne	ess in a China dish. Wha	t will be left in the dish	after the evaporation?
(a) Salt	and sulphur		(b) Salt only	
(c) Sulj	phur only		(d) All the three	
30. 1 mole	of oxygen at	oms can represent		
(a) 6.0	2×10^{23} molec	cules of O ₂	(b) 22.4 L of 0_2 at	t STP
(c) 11.2	$2 \mathrm{L}\mathrm{of}\mathrm{O}_2\mathrm{at}\mathrm{ST}$	ГР	(d) 12.04×10^{23} m	nolecules of 0 ₂
			Section – IV	
			BIOLOGY	
31. Which	of the follow	ing are complex tissues?	,	
(a) Par	enchyma and	l collenchyma	(b) Collenchyma	and sclerenchyma
(c) Xyle	em and phloe	m	(d) Xylem and Pa	renchyma
32. Which	of the follow	ing connects bones and	muscles?	
(a) Ten	dons	(b) Ligament	(c) Collagen	(d) Cartilage
33. Which	of the followi	ng labelled parts in the	figure given below rece	ives nerve impulses from other neurons?
		a b b c c c c	K S	
(a) P		(b) Q	(c) R	(d) S
RISE	Office: Plot No	774, Flat B-4, Fourth Floor, V	ignesh Sai Garden Flats, Mun	usamy Salai, KK Nagar, Chennai - 600078

RISE SCHOLARSHIP – ADMISSION TEST – SAMPLE PAPER CLASS - 9th to 10th nolastic Education 34. What are the functions of the stomata? (i) Take in water (ii) Trap sunlight (iii) Take in oxygen (iv) Give out CO₂ (a) (i) and (ii) (b) (i) and (iii) (c) (iii) and (iv) (d) (ii), (iii) and (iv) 35. Which of these characteristics are true about 'X'? (a) Cylindrical, syncytial, unbranched and voluntary (b) Cylindrical, striped, nucleated and voluntary (c) Cylindrical, striped, branched and involuntary (d) Spindle, unbranched, uni-nucleated and involuntary 36. Which of the following epithelial tissues lines the inner surface of the trachea? (a) Squamous (b) Cuboidal (c) Hyaline cartilage (d) Ciliated 37. Which of the following substances is present in the cell walls of sclerenchyma? (a) Cellulose (b) Pectin (c) Lignin (d) Hemicellulose 38. Identify the parts labelled P, Q and R in the diagram of a root hair cell, shown below. (a) P-Vacuole, Q-Nucleus, R-Cell wall. (b) P-Protoplasm, Q-Nucleus, R-cell wall membrane (c) P-Nucleus, Q-Vacuole, R-cell wall (d) P-Mitochondria, Q-Nucleus, R-cell wall 39. Which part of the cell stores nutrients? (a) Mitochondria (b) Vacuole (c) Ribosome (d) Oxysome 40. Ravi conducted an experiment to investigate what would happen when different cell organelles of a balsam plant leaf are removed. The results are recorded in the table given below. **Cell Parts Out comes** Р The cell cannot function properly Iodine solution remains yellowish brown Q R The cell cannot control the entry and exit of the substances S The cell loses its regular shape Identify cell parts P, Q, R and S.

RISE SCHOLARSHIP – ADMISSION TEST – SAMPLE PAPER

CLASS – 9th to 10th

1400 / 400 / 400 /		(a) Nucleus – Chlorophyll	– Cell Wal – Cytoplasm		
- 400 400 400 400 1		(b) Cytoplasm – Chloropla	ast – Nucleus – Cell membran	e	
400 / 400 / 400 / 1		(c) Nucleus – Chloroplast	– Cell membrane – Cell wall		
201 / 400 / 401 / 4		(d) Nucleus – Chloroplast	– Cell wall – Cell membrane		
01/100/100/100/100			Section -	- V	
5.1400.1400.1400			Aptitud	le	
1. 400 / 400 / 400	41.	Find the missing number,	/letter.		
1400.1400.1400.1		1, 1, 4, 8, 9, 27, 16, ?			
- 400 400 400 400 1		(a) 32	(b) 25	(c) 64	(d) 80
400 / 400 / 400 / 1	42.	Find the missing number/	/letter.		
2011 AUX 1 AUX 1 AUX 1 A		7, 7, 14, 42, 168, ?			
01.1.400.1.400.1.40		(a) 688	(b) 886	(c) 840	(d) 680
2.1.400.1.400.1.400	43.	Find the missing number/	/letter.		
1. And 1. And 1. And		R K, U N, X Q, A T, ?			
1 400 / 400 / 400		(a) D V	(b) E W	(c) E V	(d) D W
1 400 / 400 / 400 /	44.	Find the missing number/	/letter.		
- 400 / 400 / 400 /		I S K, L T N, P V Q, U Y T, ?			
400. V 400. V 400. V 4		(a) Z C V	(b) Z C W	(c) A C W	(d) B C W
01.1.401.1.401.1.40	45.	Find the missing number/	letter.		
2.1.400.1.400.1.40		– c h c L s c h c – s – h – L s	sc-cL		
1.400.1.400.1.400.		(a) s L c c h	(b) s L L c h	(c) s c L c h	(d) L c h c l
1.400.1.400.1.400.	46.	Find the odd-numeral pair	r.		
- 400 400 400 1		(a) 2345	(b) 3456	(c) 5467	(d) 5678
400. V 400. V 400. V	47.	Find the odd-numeral pair	r.		
400. V 400. V 400. V 4		(a) 2468	(b) 2648	(c) 4826	(d) 6482
100 Y 100 Y 100 Y 100	48.	Find the odd-numeral pair	r.		
21. 401. 1 401. 1 40		(a) 256	(b) 625	(c) 1225	(d) 2401
1 Y 400 Y 400 Y 400	49.	Find the odd-numeral pair	r.		
1 400 Y 400 Y 400		(a) 1112	(b) 4445	(c) 7778	(d) 6665
1400.1400.1400.1	50.	If in a certain language, IT	NIETAM is the code for INTI	MATE, which word ha	s the code
1400.1400.1400.1		TREVNIETARBI?			
401.1401.1401.1		(a) INVRETIBRATE	(b) INVERTIBARTE	(c) INVERTIBRETA	(d) INVERTIBRATE
2	5				

RISE SCHOLARSHIP – ADMISSION TEST – SAMPLE PAPER

CLASS – 9th to 10th

ANSWER KEY

1. C	2. A	3. A	4. D	5. C	6. A	7. A	8. C	9. D	10. B
11. B	12. B	13. A	14. A	15. B	16. A	17. D	18. A	19. B	20. C
21. D	22. D	23. B	24. A	25. C	26. A	27. A	28. D	29. B	30. C
31. C	32. A	33. A	34. C	35. D	36. D	37. C	38. C	39. B	40. C
41. C	42. C	43. D	44. C	45. A	46. C	47. A	48. C	49. D	50. D

 $Class-9^{\rm th}\ to\ 10^{\rm th}$

Read all the instructions carefully before answering your questions. You are not allowed to leave the exam hall before the end of the test.

Time Allotted: 2 Hrs

Maximum Marks: 400

GENERAL INSTRUCTIONS

- This booklet is your question paper. Answers are to be marked in the provided OMR sheet.
- This question paper contains FIVE sections.
 - Section- I is **MATHEMATICS**,
 - Section II is **PHYSICS**,
 - Section III is **CHEMISTRY**,
 - Section-IV IS **BIOLOGY**,
 - Section V is **APTITUDE**.
- There are a total of 100 questions.
- All questions are **Multiple Choice questions with single answer correct**.
- Each question carries +4 marks for correct answer, No negative marks

FILLING OMR SHEET

Ensure all details in the OMR are filled before you start marking your answers.

On the OMR sheet, darken the appropriate bubble with **BALL POINT PEN ONLY**

		 . <u> </u>	 	 			 	 	 	
Name of the Candidate :										
Roll Number :										
Date of Examination :				C	entre	e :				

RISE SCHOLARSHIP TEST CUM ADMISSION TEST – SAMPLE PAPER

1

 $Class-9^{\rm th}\ to\ 10^{\rm th}$

Useful Data

.....

		PHYSICS	
Acceleratio	n due to gravity	: g = 10 m/s ²	
Planck cons	stant	: h = 6.6 × 10 ⁻³⁴ $J - s$	
Charge of e	lectron	$: e = 1.6 \times 10^{-19} C$	
Mass of ele	ctron	: $m_e = 9.1 \times 10^{-31} kg$	
Permittivity	y of free space	: $\varepsilon_0 = 8.85 \times 10^{-12} C^2 / N - m^2$	2
Density of v	vater	$: \rho_{water} = 10^3 kg / m^3$	
Atmospher	ic pressure:	$Pa = 10^5 N / m^2$	
Gas constar	nt:	R = 8.314 J $K^{-1} mol^{-1}$	

CHEMISTRY

Gas Constant	R =	8.314 J κ^{-1} mol ⁻¹
	=	0.0821 Lit atm κ^{-1} mol ⁻¹
	=	1.987 $\approx 2 \text{ Cal } \kappa^{-1} mol^{-1}$
Avogadro's n	umber N_a	$= 6.023 \times 10^{23}$
Planck's cons	tant h	$= 6.625 \times 10^{-34} J.s$
		$= 6.625 \times 10^{-27} erg.s$
1 Faraday		= 96500 coulomb
1 calorie		= 4.2 joule
1 amu		$= 1.66 \times 10^{-27} kg$
1 eV		$= 1.6 \times 10^{-19} J$
Atomic No:	H = 1, He = 2, Li	= 3, Be = 4, B = 5, C = 6, N = 7, O = 8, F = 9, Ne = 10, Na = 11,
	Mg = 12, Si = 14	, Al = 13, P = 15, S = 16, Cl = 17, Ar = 18, K = 19, Ca = 20,
	Cr = 24, Mn = 25	5, Fe = 26, Co = 27, Ni = 28, Cu = 29, Zn = 30, As = 33, Br = 35,
	Ag = 47, Sn = 50	, I = 53, Xe = 54, Ba = 56, Pb = 82, U = 92.
Atomic masses:	H = 1, He = 4, Li	= 7, Be = 9, B = 11, C = 12, N = 14, O = 16, F = 19, Na = 23,
	Mg = 24, Si = 28	, Al = 27, P = 31, S = 32, Cl = 35.5, K = 39, Ca = 40, Cr = 52,
	Mn = 55, Fe = 5	6, Co= 59, Ni = 58.7, Cu = 63.5, Zn = 65.4, As = 75, Br = 80,
	Ag = 108, Sn = 1	18.7, I = 127, Xe = 131, Ba = 137, Pb = 207, U = 238.

RISE Office: Plot No 774, Flat B-4, Fourth Floor, Vignesh Sai Garden Flats, Munusamy Salai, KK Nagar, Chennai - 600078

£.....

RISE SCHOLARSHIP	ΓEST CUM	ADMISSION	TEST-S.	AMPLE F	PAPER

		Class – 9 th t	o 10 th	Rani Institute of
			Section – I	Scholdstir Euroation
			MATHEMATICS	
1.	The value of 0.423	is		
	(a) $\frac{423}{1000}$	(b) $\frac{423}{100}$	(c) $\frac{423}{990}$	(d) $\frac{419}{990}$
2.	If $2^{x-1} + 2^{x+1} = 320$, then the value of x is		
	(a) 6	(b) 8	(c) 5	(d) 7
3.	Factors of polynom	nial $x^3 - 3x^2 - 10x + 24a$	re	
	(a) $(x-2)(x+3)$	(x - 4)	(b) $(x+2)(x+3)(x+3)(x+3)(x+3)(x+3)(x+3)(x+3)(x+3$	(x + 4)
	(c) $(x+2)(x-3)$	(x - 4)	(d) $(x-2)(x-3)(x-3)(x-3)(x-3)(x-3)(x-3)(x-3)(x-3$	(x - 4)
4.	Factors of $(a^2 + a)$	$^{2}+4(a^{2}+a)-12$ are		
	(a) $(a^2 + a + 6)(a + a)(a + b)(a + a)(a + b)(a +$	(a-1)(a-1)	(b) $(a^2 - a + 6)(a - 2)(a -$	2)(a+1)
	(c) $(a^2 + a + 6)(a - a)(a -$	(a-1)(a-1)	(d) $(a^2 + a + 6)(a + 2)(a +$	2)(a+1)
6. 7. 8. 9.	Which of the follow (a) $3x + 2 = 0$ If a linear equation (a) $y - x = 0$ It is known that if (a) first axiom In the adjoining fig	wing equations represen (b) $3y + 2 = 0$ in has solutions (- 2, 2), (((b) $x + y = 0$ x + y = 10, then $x + y + y + (b)$ second axion gure, if $\angle A = (3x + 2)^\circ$, $\angle A$ A	ts a line parallel to x-axis? (c) $3x + 2y = 0$ (c) $3x + 2y = 0$ (c) $-2x + y = 0$ (c) $-2x + y = 0$ (c) third axiom $xB = (x - 3)^\circ, \angle ACD = 12^\circ$	(d) $3x - 2y = 0$ of the form (d) $-x + 2y = 0$ axiom that illustrates this statement is (d) fourth axiom 7°, then $\angle A =$
	(a) 24°	(b) 32°	(c) 96°	(d) 98°
10.	If angles of a trian triangle is –	gle are in the ratio 2 : 4	: 9, then the difference of	the two smaller exterior angles of the
	(a) 24°	(b) 30°	(c) 44°	(d) 60°
11.	The sides of an e triangle?	equilateral triangle are	(2a - b + 5), (a + b)and (2b - a + 2). What is the area of the
	(a) $\frac{\sqrt{3}}{4} \times a^2$	(b) $\frac{\sqrt{3}}{4} \times b^2$	(c) $\frac{\sqrt{3}}{4} \times 49$	(d) $\frac{\sqrt{3}}{4} \times 81$

IXI.		$Class - 9^{th} table to the second $	o 10 th	5711011 22 17	
<u> </u>					acholastic Education
26.	The value of acceleratio	on due to gravity (g)	on the surface of t	he moon is	$(1) 1 (\dots - 2)$
77	(a) 9.8 cm s -	(D) 9.8 m s -	(c) 2.5 cm s	-	$(a) 1.6 \text{ m s}^{-1}$
27.	between them same. the	e force between the	se objects will be	the objects	are doubled keeping distant
	F				
	(a) $\frac{1}{2}$	(b) F	(c) 2F		(d) 4F
28.	A sealed tin of liquid of	500 g has volume o	f 250 cm ³ . Density	of tin is	
	(a) 1 g/cm ³	(b) 2 g/cm ³	(c) 2.3 g/cm	3	(d) 1.33 g/cm ³
29.	A planet of volume <i>V</i> ar original volume, what w	nd mass <i>m</i> has grav vill be the accelerati	itational accelerati ion due to gravity?	on <i>g</i> on its surf	face. If it expands to 8 times i
	(a) 4 g	(b) 2 g	(c) g/4		(d) g/8
30.	Two bodies of masses 1 gravitational force betw	kg and 2 kg are se veen these two bodi	parated by a distan les is	ce of 1 m on th	e surface of the earth, then the
	(a) $1 \times 6.673 \times 10^{-11} N$	(b) 2×6.673×10	$^{-11} N$ (c) 3×6.673	$\times 10^{-11} N$	(d) $4 \times 6.673 \times 10^{-11} N$
31.	Momentum of an object	is doubled if			
	(a) its mass is doubled a	and velocity is halve	ed		
	(b) its mass remains the	e same and its veloc	rity is halved		
	(c) its velocity is double	ed but mass remains	s the same		
	(d) both mass and veloc	city are doubled			
32.	The following question (R) Answer the question	has two statements ns using the code gi	s: One labelled as A ven below:	ssertion (A) an	nd the other labelled as Reaso
	(A) If both Assertion (A)(B) If both Assertion (A)(A).) and Reason (R) ar) and Reason (R) ar	e true and Reason (e true but Reason ((R) is the correc (R) is not the co	ct explanation of Assertion (A prrect explanation of Assertic
	(C) If Assertion (A) is tr	ue but Reason (R) i	s false.		
	(D) If Assertion (A) is fa	llse but Reason (R)	is true.		
	Assertion (A): A rocket	moves forward by p	oushing the surrou	nding air backv	vards.
	Reason (R): Rocket deri	ives the force to mo	ve forward accordi	ng to Newton's	third law of motion.
	(a) D	(b) C	(c) B		(d) A
33.	A car of mass 1000 kg m force exerted by the car	oving with a velocit on the wall.	ty of 36 km/h hits a	wall and come	s to rest in 5 s. Find the avera
	(a) 2000 N	(b) 1500 N	(c) 750 N		(d) 2250 N
34.	The figure given below a cting on the particle is	shows the displaced zero?	ment plotted agains	st time for a pai	rticle. In which region the for
		Displacement		- E	
	(a) AB	(b) BC	(c) CD		(d) DE
	(a) AB	(b) BC	(c) CD	ime	(d) DE

.....

RI	SE SCHOLARSHIP TEST CUM ADMISSI	ON TEST – SAM	IPLE PAPER						
	Class – 9^{th} to 10^{th}		Rani Institute of scholastic Education						
44.	How many the following are physical changes.								
	(a) Drying of a shirt in the Sun								
	(b) Rising of hot air over a radiator								
	(c) Burning of kerosene in a lantern								
	(d) Change in the colour of black tea on adding le	emon juice to it							
	(e) Churning of milk cream to get butter								
	(f) Making pieces of a paper								
	(a) 4 (b) 5	(c) 6	(d) 3						
45.	Arun has prepared 0.2% (by mass) solution of s represents the composition of the solutions?	sodium chloride in ^s	water. Which of the following correctly						
	(a) 1.00 g of NaCl + 500 g of water (b) 0.2 g of NaCl + 100 g of water								
	(b) 0.2 g of NaCl + 100 g of water								
	(c) 2 g of NaCl + 996 g of water (d) 0.2 g of NaCl + 98.0 g of water								
16	Which of the following does not pertain to the te	rm molar mass of th	ne substance?						
10.	(a) It is mass of one molecule of the substance		ie substance.						
	(a) It is mass of 6.022×10^{23} molecules of the sub-	stance in grams							
		stance in grains							
	(c) It is expressed in the units, gmol								
	(d) Its numerical value is same as molecular mass of substance								
47.	1.80 g of glucose is dissolved in 18 g of water.	The total number o	f oxygen atoms in the solution is $x N_0$						
	where N_0 is Avogadro number. The value of x is,								
	(a) 1 (b) 1.01	(c) 1.06	(d) 1.12						
48.	The formula of nitride of magnesium is								
	(a) MgN (b) $Mg(NO_2)_2$	(c) Mg_3N_2	(d) Mg_2N_3						
49.	Which of the following represents correct units of	of molecular mass?							
	(a) g (b) u	(c) mg	(d) kg						
50.	In which sample of water, dissolution of 1 g of co	opper sulphate will	be most rapid?						
	(a) 50 mL of water at room temperature (25°C)	(b) 50 mL of water	at 10°C						
	(c) 50 mL of water at 50°C	(d) 50 mL of water	at 0°C						
51.	A mixture of sulphur and carbon disulphide is								
	(a) heterogeneous and shows Tyndall effect								
	(b) homogeneous and shows Tyndall effect								
	(c) heterogeneous and does not show Tyndall effect								
	(d) homogeneous and does not show Tyndall effect								

RIS	SE SCH	IOLA	RSHIP	TEST CUI	M ADM	ISSION TEST – SAI	MPLE PA	APER			
				Cla	$ss - 9^{th} to$	10 th		Rani	Institute of stic Education	1	
2.	The giv	en graj	ph repre	esents the coo	oling curv	e of substance X. Whic	h of the fo	llowing sta	tement	s are cor	rec
					() 60 50 30 20 10	$ \begin{array}{c} $					
	I. The p	rocess	I repres	sents cooling	of a vapo	ur state and process II	represent	ts heating o	of a soli	d state.	
	II. The l	ooiling	point is	at 318K and	melting p	ooint is 77°F according	to the cu	ve.			
	III. At 2	5°C, th	e substa	ance exits in s	solid state	:					
	IV. The	zone P	Q is con	densation zo	one, ST is f	freezing zone.					
	V. This	curve	witnesse	es three state	es of matte	er of a substance unde	rgoing phy	vsical chang	ge.		
	(a) I an	d III or	nly	(b) II an	d IV only	(c) II, IV and V or	ıly	(d) III,	IV and	V only	
3.	The late 20g of v	ent hea water a	at of fus at 0°C.	ion of ice is 8	0 calories	s per gram. Calculate	the heat ro	equired to	convert	t 20g of i	ice
	(a) 160	0 cal		(b) 40 ca	al	(c) 4 cal		(d) 16) cal		
4.											
	(i) X co (ii) P a (iii) R (iv) S c (v) X c (vi) P a	ind R a is one can be an hav	of the co a compo ve Q, R a are pure	k dyes ures of two d omponents o onent of X nd S substances	ifferent d <u>y</u> f X	yes	• • X	• • • •	e R	• S	
	(a) (i) a	nd (ii)	only		(b) (iii), (iv), (v) and (vi) only						
(c) (ii), (iii), (iv) and (v) only					(d) (i), (ii) and (iii) only						
5.	The number of protons, neutrons and electrons in six species – I, II, III, IV, V and VI are as follows:								ws:		
		р	n	e							
	$\mathrm{I} \rightarrow$	17	18	17							
	$\mathrm{II} \rightarrow$	17	20	17							
	$\text{III} \rightarrow$	20	20	20							
	$IV \rightarrow$	11	12	10							
	$V \rightarrow$	19	21	19							
	$VI \rightarrow$	9	10	10							
	Which	of the f	ollowin	g statements	are corre	ct?					
(p) IV and VI are isoelectronic						I and IV are isobars	(r) I	and II are i	sotopes	S	
	(s) IV a	nd III a	are isoel	ectronic	(t) III	and V are isobars					
	(a) (p),	(r) and	d (s) onl	У	(b) (p), (r) and (t) only						
(c) (r) and (t) only					(d) (p) and (r) only						

		$Class - 9^{th}$ to 1	0 th	Rani Institute of				
56.	Which of the followi	ng has highest number of	atoms?					
	(a) 4g of hydrogen g	$as(H_2)$	(b) 80g of NaOH					
	(c) 71g of chlorine g	as (Cl_2)	(d) 44.8 l of H_2 at STP					
57.	Which of the followi	ng have same valency?						
-	(A) 2, 8, 1	(B) 2, 1	(C) 2, 8, 8, 2	(D) 2, 8, 2				
	(E) 2, 8, 3	(F) 2, 8, 4						
	(a) A, C and D	(b) C and D	(c) A, B and F	(d) B and E				
58.	A bottle of sulphuric acid has been labelled as 20% (W/W) solution; Density = 1.02 g/mL. What is the mass by volume percentage of solution?							
	(a) 20.4%	(b) 40.8%	(c) 10.2%	(d) None of these				
59.	Vimal does an exper 70% v/v. What is th	iment, where he needs to e amount of alcohol he wo	prepare a 500ml solutions of ould want to prepare this solut	ethyl alcohol of concentration cions?				
	(a) 350 ml	(b) 35 l	(c) 714 ml	(d) None of these				
60.	X and Y are two chemical species which react to form a product Z. Z contains both X and Y. X and Y can be subdivided into still simple substances. Which of the following statements is false about X, Y, Z?							
	(i) Z is a compound		(ii) X and Y are elements					
	(iii) X and Y are com	pounds	(iv) Z is man made element					
	(a) (i) and (ii)	(b) (iii) and (iv)	(c) (i) and (iv)	(d) (i), (iii), (iv)				
		S	Section - IV					
			BIOLOGY					
61.	Animal cell lacking	g nuclei would also lack	in					
	(a) Ribosome		(b) Lysosome					
(2)	(c) Endoplasmic re	eticulum	(d) Chromosome					
62.	(a) Plant	(b) Animal	(c) Bacteria	(d) Algae				
63.	The most widely dist	tributed component in a c	ell is:	(u) mgae				
	(a) Chromoplast	(b) Chloroplast	(c) RNA	(d) DNA				
64.	Ripe fruits soften du	e to:						
	(a) Degeneration of	cell walls	(b) Partial solubilisation of pectic compounds					
	(c) Metabolism of ta	nnins	(d) Exosmosis					
65.	Longest animal cell	IS: (b) Nerve cell	(c) Striated muscle cell	(d) Ostrich egg				
66.	Cell doctrine was pr	oposed by:	(c) strated musele cen	(u) osti ten egg				
001	(a) Schleiden and Sc	hwann	(b) Watson and Crick					
	(c) Schleiden, Schwa	ann and Rudolf Virchow	(d) Davson and Danielli					
67.	Which of the followi	ng kind of lipids are most	abundant in the cell membrar	ne?				
	(a) Phospholipids	(b) Glycolipids	(c) Cholesterol	(d) Cerebroside				

RISE SCHOLARSHIP TEST CUM ADMISSION TEST – SAMPLE PAPER

14

			$Class - 9^{th} tc$	• 10 th	Rani Institute of scholastic Education			
74.	Given are some differences between the tissues of plants and animals. Which of these are incorrect differences?							
			Plant tissue		Animal tissue			
	1	Tissue of pla and dead cel	nts are made up of ligni ls.	fied Tissues in anir	mals are made up of living cells.			
	2	The structur more compli	al organization of plants cated than that of anima	s is Structural orga als. complex.	Structural organization of animals is not complex.			
	3	Growth in pla	ants is definite.	Growth in anim	Growth in animals is indefinite.			
	4	There are div tissues in pla	viding and non-dividing nts at specific regions.	They do not po and non-divid	ossess specific regions of dividing ing tissues.			
	(a) 1,	3 and 4	(b) 2 and 3	(c) 3 and 4	(d) 1, 2 and 3			
75.	Read	the given state	ments and select the co	orrect ones.				
	1. T	here is no dem	arcation of dividing and	l nondividing regions	in animals.			
	2. A	nimals consum	e less energy as compa	red to plants.				
	3. M	lost of the tissu	es that plants contain a	re living.				
	4. St	tructural organ	nization of organs and	organ systems are m	ore specialized animals than even in v			
	C	omplex plants.						
	5. G	rowth of anima	als is indefinite.					
	(a) 2,	3 and 5	(b) 2, 3 and 4	(c) 1 and 4	(d) 1 and 5			
76.	Whic	h of the followi	ng organism is included	d in Monera kingdom?	?			
	(a) Ba	acteria	(c) Agaricus	(b) Euglena	(d) Amoeba			
77.	Whic	h of the followi	ng organism is included	d in Pteridophyte?				
	(a) Cy	/cas	(b) Pinus	(c) Deodar	(d) Fern			
78.	Whic	h of the followi	ng organism is included	d in porifera?				
	(a) Sy	vcon	(b) Hydra	(c) Planaria	(d) Octopus			
79.	Whic	h of the followi	ng animals is included i	in amphibia?				
	(a) Li	on fish	(b) Toad	(c) King cobra	(d) Crow			
30.	Whic	h of the followi	ng animals is included i	in Reptilia?				
	(a) Fl	ying fish	(b) Hyla	(c) King cobra	(d) Pigeon			
				Section – V				
				Aptitude				
31.	Two	numbers are re	espectively 20% and 50	% more than a third r	number. The ratio of the two numbers i			
	(a) 3	: 4	(b) 4 : 5	(c) 2 : 3	(d) 2 : 4			
32.	Find	the missing nu	mber.					
		6 24 8 12 6	$4 \qquad 5 \\ 12 \qquad 2 \\ 3 \qquad 7 \qquad 2$					
	(2) 10	2	(b) 16	(c) 60	(d) 70			

RISE SCHOLARSHIP TEST CUM ADMISSION TEST – SAMPLE PAPER

.....

 $Class - 9^{th}$ to 10^{th}

1

Keys									
Q. No.	Key	Q. No.	Key	Q. No.	Кеу	Q. No.	Key	Q. No.	Кеу
1	Α	21	Α	41	D	61	D	81	В
2	D	22	С	42	С	62	С	82	D
3	Α	23	В	43	В	63	С	83	Α
4	Α	24	Α	44	Α	64	Α	84	С
5	С	25	В	45	С	65	В	85	D
6	В	26	D	46	Α	66	Α	86	В
7	В	27	D	47	С	67	Α	87	В
8	В	28	В	48	С	68	В	88	В
9	D	29	С	49	В	69	Α	89	В
10	D	30	В	50	С	70	С	90	В
11	С	31	С	51	D	71	В	91	С
12	D	32	Α	52	С	72	Α	92	D
13	В	33	Α	53	Α	73	Α	93	D
14	С	34	Α	54	В	74	В	94	Α
15	С	35	D	55	В	75	С	95	В
16	В	36	В	56	В	76	Α	96	В
17	D	37	В	57	В	77	D	97	С
18	В	38	С	58	Α	78	Α	98	В
19	D	39	В	59	Α	79	В	99	D
20	Α	40	С	60	В	80	С	100	D
